当前位置:网站首页技术文章 > 矿山生产勘探中的探采结合的方法

产品列表 / products

矿山生产勘探中的探采结合的方法

更新时间:2020-08-19 点击量:2443

 

 所谓探采结合,是指在保证探矿效果的前提下,实行探矿工程与采掘工程的统筹规划,统一安排,利用采掘工程进行生产探矿,或生产探矿工程能为采矿工作所利用,实行探采结合是我国矿山地质工作实践中总结出来的一套行之有效的工作方法。

 

  (一)探采结合的意义与要求

 

  生产探矿工作贯穿于矿山生产的全过程,它常与采矿工程交叉进行,许多工程互有联系,并往往可以互相利用。实行探采结合可以减少矿山坑道掘进量,降低采掘比,加快生产探矿进度,缩短生产探矿和生产准备周期,降低生产成本,提高探矿工作质量与效果,有利于安全生产和加强生产管理,充分发挥矿山生产能力,并可使矿山坑道系统更趋合理。  实施探采结合时,要求探采双方在工作上必须打破部门界限、实行统一设计,联合设计,统筹施工和综合利用成果,形成一体化工作法;探采结合必须系统的、全面的,必须贯穿于采掘生产的全过程;合理确定施工顺序,在保证“探矿超前”的前提下,探采之间力求做到平行交叉作业;探采结合必须以矿体的一定勘探程度为基础,特别是对地下采矿块段内部矿体连续性应已基本掌握,不致因矿体变化过大导致在底部结构形成后,采准、回采方案的大幅修改,工程的大量报废。在条件不具备的情况下,仍先施工若干单纯的探矿工程。

 

  (二)露天矿山的探采结合

 

  露天采矿在剥离前,一般均已进行一定工程密度的探矿工作,矿体总的边界已经控制。因此,露天采矿的探采结合主要存在于爆破回采阶段。此时能用于生产探矿的生产工程为采场平台、台阶边坡、爆破孔、爆破洞井、爆破矿堆。利用平台与探槽的资料编制平台地质平面图,利用岩心钻及爆破孔揭露的资料编制地质剖面图。  剥离和堑沟,是露天开采的重要采准工程,同时可引起到生产探矿作用。通过剥离,可重点查明矿体在平面上的四周边界和矿体的夹石分布。通过堑沟,可掌握矿体上。下盘具体界线。

 

  采矿平台和爆破孔,是采矿过程中的直接生产工程,可以直接利用平台上部和侧面已暴露部分进行素描、编录、取样等地质工作,确定在平台上的矿体边界、地质构造界线、夹石分布、矿山品位和类型等,并编制平台实测地质平面图。在该图的基础上,进行穿爆孔设计。根据穿爆孔岩粉取样化验结果和爆破孔岩粉颜色的变化,进一步圈定矿体的局部边界,指导采矿工作的进行,同时根据爆破孔孔低取样资料,编制下一台阶预测平台地质平面图,作为平台开拓设计的依据。

 

  (三)地下开采的探采结合

 

  1.开拓阶段的探采结合  开拓阶段各种工程用于探采结合的可能性分为下述几类: 控制性工程  包括竖井、斜井、主平窿。无探矿作用。 联络工程  石门、井底车场等,也不能起探矿作用。  探采结合工程  包括脉内沿脉、运输穿脉等,这些工程大部分切穿矿脉,能起探矿作用。 脉外开拓工程  此类工程对矿体产状、形态、边界的空间位置依赖性较大,必要在探矿后才能施工,不能实行探采结合。

 

  纯生产探矿工程  包括探矿穿脉、天井、忙中段、坑内钻等,这类工程对生产无直接生产意义。  开拓工程与生产探矿结合的步骤和方法:

 

  (1)地质人员提供阶段开拓的预测地质平面图及矿石品位、储量资料;

 

  (2)在充分考虑阶段地质条件和探矿要求的基础上,采矿人员拟定阶段开拓方案;

 

  (3)进行探采联合设计,采矿人员布置开拓工程,地质人员布置探矿工程,双方共同选择探采结合工程,并进行工程的施工设计;

 

  (4)地采双方联合确定工程施工顺序并统筹施工;施工中,地质人员与测量人员配合掌握施工工程的方向、进度、目的,采矿人员控制技术措施;

 

  (5)阶段开拓工程施工结束后,地质人员视情况补充一定探矿工程,再整理开拓阶段生产勘探所获资料,为转入采准阶段的探采结合创造条件。

 

  2.采准阶段的探采结合

 

  采准阶段的探采结合,是以采矿块段(采场。采区、盘区)为单元,属于单体性生产探矿范围。  采准工程与生产探矿工程结合的步骤:

 

  (1)地质人员提供采矿块段地质平面图、剖面图和矿体纵投影图;

 

  (2)采矿人员依据资料初步确定采矿方法及采准方案;

 

  (3)地采双方共同商定采准阶段的探采结合方案,统筹是从采准工程中,选定能达到探矿目的的而又允许优先施工的工程作为探采结合工程,有时与分段等生产工程结合探采结合层;

 

  (4)编制块段探采结合施工设计,利用采准工程进行生产探矿的工程,一般由采矿人员设计,纯生产探矿工程由地质人员设计;

 

  (5)确定工程施工顺序,首先掘进离矿体较远或对矿体空间位置依赖性不大的工程,以接近矿体和构成通路然后选择某些能起探矿作用又符合探矿间距的采准工程作为探采结合工程,并优先施工。配合部分纯生产探矿工程,对矿块内部的矿体边界、夹石、构造、矿石质量及品位变化情况进行控制;

 

  (6)地质人员整理块段探采结合工程施工所获地质资料,提供采矿人员进行全面采准工程设计;

 

  (7)采准工程全面施工。施工结束后,地质人员视情况补充必要的探矿工程,再整理采准阶段生产勘探阶段所获地质资料,为转入块段矿石回采作好准备。

 

  采准阶段的探采结合方法,随矿体地质条件和采矿方法的不同而有别:

 

  (1)壁式采矿方法的采场  此法适用于薄而缓倾斜的矿体。结构简单,采准工程多布置于矿体内,能用于探矿。此种采矿方法沿矿体走向布置。先从脉外大巷开溜井进入矿体下盘,切割沿脉和倾斜井为探采结合工程,斜井中的探矿笑穿脉、短天井,用于探矿体厚度。这些工程也为探采结合工程,如地质构造复杂时,还应补充纯生产勘探工程。

 

  (2)留矿法采场  此类采矿方法适用于薄而陡倾斜的矿块,采场多为沿矿体走向布置,这类采矿方法分有底柱留矿法及无底柱留矿法。

 

  (3)分段法(空场法)采场  此类采矿方法适用于中厚、陡倾斜矿体,电耙道沿矿体走向布置。采场可分二或三个阶段,分段高10~15米,用中深孔凿岩,采场各天井为探采结合工程。它可以控制矿体下盘界线,用天井辅穿或天井里打钻孔代替幅穿探矿体上盘界线,再于分段凿岩巷道里布置扇形坑内钻进行矿体的重新圈定。

 

  (4)沿矿体走向布置的有底柱分段崩落法采场  此法适用于中厚、缓倾斜矿体的采矿,即一个阶段分二或三个分段,分段高15~20米左右,利用电耙道出矿,电耙道于脉外沿脉沿矿体走向布置,电耙道长为30~40米。

 

  (5)垂直矿体走向布置的有底柱分段崩落法采场  当矿体为厚和极厚时,电耙道垂直矿体走向布置,一般间距为15米左右。作为采准工程,常要求这些穿脉耙道工程穿过矿体盘界线,这样,这些坑道变*起到加密工程的作用。

 

  (6)无底柱分段崩落法采场  此法适用于厚矿体,进路工程多为垂直矿体走向布置,进路间距一般为10米,分段高10米,进路工程大部分位于矿体内部,各个进路和下盘切割井可作为探采结合工程。依据这些探采结合工程的地质资料进行矿体的重新圈定和储量计算,提供备采设计利用。

 

  3.回采阶段的探采结合

 

  经过采准阶段的探采结合,重新圈定矿体,一般已经控制柱矿体的形态和质量。对于形态变化复杂的矿体,为了更准确地掌握矿体的变化,应该充分利用会采阶段的切割层。回采分层、爆破中深孔等进行后一次生产探矿,进行矿体边界的再次圈定,正确指导下一步的回采工作。

 

全自动野外地温监测系统/冻土地温自动监测系统

地源热泵分布式温度集中测控系统

矿井总线分散式温度测量系统方案

矿井分散式垂直测温系统/地热普查/地温监测哪家好选鸿鸥

矿井测温系统/矿建冻结法施工温度监测系统/深井温度场地温监测系统

 

TD-016C型 地源热泵能耗监控测温系统

产品关键词:地源热泵测温,地埋管测温,浅层地温在线监测系统,分布式地温监测系统

此款系统专门为地源热泵生产企业,新能源技术安装公司,地热井钻探公司以及节能环保产业等单位设计,通过连接我司单总线地热电缆,以及单通道或多通道485接口采集器,可对接到贵司单位的软件系统。欢迎各类单位以及经销商详询!此款设备支持贴牌,具体价格按量定制。

RS485竖直地埋管地源热泵温度监测系统【产品介绍】

    地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。较传统的测温电缆设计方法,单总线测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

   采集服务器通过总线将现场与温度采集模块相连,温度采集模块通过单总线将各温度传感器采集到的数据发到总线上。每个采集模块可以连接内置1-60个温度传感器的测温电缆相连。 本方案可以对大型试验场进行温度实时监测,支持180口井或测温电缆及1500点以上的观测井温度在线监测。

RS485竖直地埋管地源热泵温度监测系统

1. 地埋管回填材料与地源热泵地下温度场的测试分析 

2. U型垂直埋管换热器管群间热干扰的研究 

3. U型管地源热泵系统性能及地下温度场的研究 

4. 地源热泵地埋管的传热性能实验研究 

5. 地源热泵地埋管换热器传热研究 

6. 埋地换热器含水层内传热的数值模拟与实验研究,埋地换热器含水层内传热的数值模拟与实验研究。

竖直地埋管地源热泵温度测量系统,主要是一套*基于现场总线和数字传感器技术的在线监测及分析系统。它能有对地源热泵换热井进行实时温度监测并保存数据,为优化地源热泵设计、探讨地源热泵的可持续运行具有参考价值。

二、RS485竖直地埋管地源热泵温度监测系统本系统的重要特点:

1.结构简单,一根总线可以挂接1-60根传感器,总线采用三线制,所有的传感器就灯泡一样,可以直接挂在总线上.

2.总线距离长.采用强驱动模块,普通线,可以轻松测量500米深井.

3.的深井土壤检测传感器,防护等级达到IP68,可耐压力高达5Mpa. 

4.定制的防水抗拉电缆,增强了系统的稳定性和可靠特点总结:高性价格比,根据不同的需求,比你想象的*.

针对U型管口径小的问题,本系统是传统铂电阻测温系统理想的替代品. 可应用于:

1.地埋管回填材料与地源热泵地下温度场的测试分析 

2.U型垂直埋管换热器管群间热干扰的研究 

3. U型管地源热泵系统性能及地下温度场的研究 

4. 地源热泵地埋管的传热性能实验研究 

5. 地源热泵地埋管换热器传热研究 

6. 埋地换热器含水层内传热的数值模拟与实验研究。

   本系统技术参数:支持传感器:18B20高精度深井水温数字传感器,测井深:1000米,传感器耐压能力:5Mpa ,配置设备:远距离温度采集模块+测井电缆+传感器,

RS485竖直地埋管地源热泵温度监测系统系统功能: 

1、温度在线监测 

2、 报警功能 

3、 数据存储 

4、定时保存设置

5、历史数据报表打印 

6、历史曲线查询等功能。

【技术参数】

1、温度测量范围:-10℃ ~ +100℃

2、温度精度: 正负0.5℃ (-10℃ ~ +80℃)

3、分  辨 率: 0.1℃

4、采样点数: 小于128

5、巡检周期: 小于3s(可设置)

6、传输技术: RS485、RF(射频技术)、GPRS

7、测点线长: 小于350米

8、供电方式: AC220V /内置锂电池可供电1-3 

9、工作温度: -30℃ ~ +80℃

10、工作湿度: 小于90%RH

11、电缆防护等级:IP66

使用注意事项:

防水感温电缆经测试与检测,具备一定的防水和耐水压能力,使用时,请按以下方法操作与使用:
1. 使用时,建议将感温电缆置于U形管内以方便后期维护。
若置与U形管外,请小心操作,做好电缆防护,防止在安装过程中电缆被划伤,以保持电缆的耐水压能力和使用寿命。
2. 电缆中不锈钢体为传感器所在位置,因温度为缓慢变化量,正常使用时,请等待测物热平衡后再进行测量。
3. 电缆采用三线制总线方式,红色为电源正,建议电源为3-5V DC,黑色为电源负,兰色为信号线。请严格按照此说明接线操作。
4. 系统理论上支持180个节点,实际使用应该限制在150个节点以内。
5.系统具备一定的纠错能力,但总线不能短路。
6. 系统供电,当总线距离在200米以内,则可以采用DC9V给现场模块供电,当距离在500米之内,可以采用DC12V给系统供电。

【北京鸿鸥成运仪器设备有限公司提供定制各个领域用的测温线缆产品介绍】

地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。

   由北京鸿鸥成运仪器设备有限公司推出的地源热泵温度场测控系统,硬件采取*ARM技术;上位机软件使用编程语言技术设计,富有人性、直观明了;测温传感器直接封装在电缆内部,根据客户距离进行封装。目前该系统广泛应用于地源热泵地埋管、地源热泵温度场检测、地源热泵地埋换热井、地源热泵竖井及地源热泵温度场系统进行地温监测,本系统的可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

地源热泵诊断中土壤温度的监测方法:
  为了实现地源热泵系统的诊断,必须首先制定保证系统正常运行的合理的标准。在系统的设计阶段,地下土壤温度的初始值是一个重要的依据参数,它也是在系统运行过程中可能产生变化的参数。如果在一个或几个空调采暖周期(一般一个空调采暖周期为1年)后,系统的取热和放热严重不平衡,则这个初始温度会有较大的变化,将会大大降低系统的运行效率。所以设计选用土壤温度变化曲线作为诊断系统是否正常的标准。
  首先对地源热泵系统所控制的建筑物进行全年动态能耗分析,即输入建筑物的条件,包括建筑的地理位置、朝向、外形尺寸、围护结构材料和房间功能等条件,计算出该区域全年供暖、制冷的负荷,我们根据该负荷,选择合适的系统配置,即地埋管数量以及必要的辅助冷热源,并动态模拟计算地源热泵植筋加固系统运行过程中土壤温度的变化情况,得到初始土壤温度标准曲线。采用满足土壤温度基本平衡要求的运行方案运行,同时系统实时监测土壤温度变化情况,即依靠埋置在地下的测温传感器监测土壤的温度,并且将测得的温度传递给地源热泵系统。

浅层地温能监测系统概况:

地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷,在埋地管换热器设计中,土壤的导热系数是很重要的参数,而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地源热泵地埋测温电缆的设计显得尤其重点。较传统的地源热泵测温电缆设计方法,北京鸿鸥成运仪器设备有限公司研发的数字总线式测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

   为方便研究土壤、水质等环境对空调换热井能效等方面的可靠研究或温度测量,目前地源热泵地埋管测温电缆对于地埋换热井,有口径小,深度较深等特点的测温方式,如果测量地下120米的地源热泵井,要放12路线PT100传感器。12根测温线缆若平均放置,即10米放一个探头,则所需线材要1500米,在井上需配置一个至少12通道的巡检仪,若需接入电脑进行温度实时记录,该巡检仪要有RS232或RS485功能,根据以上成本估计,这口井进行地热测温至少成本在8000元,虽然选择高精度的PT100可提高系统的测温精度,但对模拟量数据采集,提供精度的有效办法是提供仪器的AD转换器的位数,即提供巡检仪的测量精度,若能够在长距离测温的条件下进行多点测温,能够做到0.5度的精度,则是非常不容易。针对这一需求,北京鸿鸥成运仪器设备有限公司推出“数字总线式地源热泵地埋管测温电缆”及相应系统。矿井深部地温监测,地源热泵温度监测研究,地源热泵温度测量系统,浅层地热测温系统。

地源热泵数字总线测温线缆与传统测温电缆对比分析:
   传统的温度检测以热敏电阻、PT100或PT1000作为温度敏感元件,因其是模拟量,要对温度进行采集,若需较高精度,需要选择12位或以上的AD转换及信号处理电路,近距离时,其精度及可靠性受环境影响不大,但当大于30米距离传输时,宜采用三线制测方式,并需定期对温度进行校正。当进行多点采集时,需每个测温点放置一根电缆,因电阻作为模拟量及相互之间的干扰,其温度测量的准确度、系统的精度差,会受环境及时间的影响较大。模块量传感器在工作过程中都是以模拟信号的形式存在,而检测的环境往往存在电场、磁场等不确定因素,这些因素会对电信号产生较大的干扰,从而影响传感器实际的测量精度和系统的稳定性,每年需要进行校准,因而它们的使用有很大的局限性。

    北京鸿鸥成运仪器设备有限公司研发的总线式数字温度传感器,具有防水、防腐蚀、抗拉、耐磨的特性,总线式数字温度传感器采用测温芯片作为感应元件,感应元件位于传感器头部,传感器的精度和稳定性决定于美国进口测温芯片的特性及精度级别,无需校正,因数据传输采用总线方式,总线电缆或传感器外径可做得很小,直径不大于12mm,且线路长短不会对传感器精度造成任何影响。这是传统热电阻测温系统*的优势。所以数字总线式测温电缆是地源热泵地埋管管测温、地温能深井和地层温度监测理想的设备。数字总线式数据传感器本身自带12位高精度数据转换器和现场总线管理器,直接将温度数据转换成适合远距离传输的数字信号,而每个传感器本身都有唯的识别ID,所以很多传感器可以直接挂接在总线上,从而实现一根电缆检测很多温度点的功能。

地源热泵大数据监控平台建设

一、系统介绍

1、建设自动监测监测平台,可监测大楼内室内温度;热泵机组空调侧和地源侧温度、

压力、流量;系统空调侧和地源侧温度、压力、流量;热泵机组和水泵的电压、电流、功率、

电量等参数;地温场的变化等,实现热泵机组运行情况 24 小时实时监测,异常情况预

警,做到真正的无人值守。可对热泵系统的长期运行稳定性、系统对地温场的影响以及能效

比等进行综合的科学评价,为进一步示范推广与系统优化的工作提供数据指导依据。

具体测量要求如下:

1)各热泵机组实时运行情况;

2)室内温度监测数据及变化曲线;

3)室外环境温度数据及变化曲线;

4)机房内空调侧出回水温度、压力、流量等监测数据及变化曲线;

5)机房内地埋管侧出回水温度、压力、流量等监测数据及变化曲线;

6)机房内用电设备的电流、电压、功率、电能等监测数据及变化曲线;

7)地温场内不同深度的地温监测数据及变化曲线;

8)能耗综合分析、系统 COP 分析以及系统节能量的评价分析。

2、自动监测平台建成以后可以对已经安装自动监测设备的地热井实施自动监测的数据分

析展示,可实现地热井和回灌井的水位、水温、流量实施传输分析,并可实现数据异常情况预

警,做到实时监管,有地热井运行的稳定性。

1)开采水量及回水水量的流量监测及变化曲线;

2)开采水温及回水水温的温度监测及变化曲线;

3)开采井井内水位监测及变化曲线;

 

 

推荐产品如下:

地源热泵温度监控系统/地源热泵测温/多功能钻孔成像分析仪/井下电视/钻孔成像仪/地热井钻孔成像仪/井下钻孔成像仪/数字超声成像测井系统/多功能超声成像测井系统/超声成像测井系统/超声成像测井仪/成像测井系统/多功能井下超声成像测井仪/超声成象测井资料分析系统/超声成像

关键词:地热水资源动态监测系统/地热井监测系统/地热井监测/水资源监测系统/地热资源回灌远程监测系统/地热管理系统/地热资源开采远程监测系统/地热资源监测系统/地热管理远程系统/地热井自动化远程监控/地热资源开发利用监测软件系统/地热水自动化监测系统/城市供热管网无线监测系统/供暖换热站在线远程监控系统方案/换热站远程监控系统方案/干热岩温度监测/干热岩监测/干热岩发电/干热岩地温监测统/地源热泵自动控制/地源热泵温度监控系统/地源热泵温度传感器/地源热泵中央空调中温度传感器/地源热泵远程监测系统/地源热泵自控系统/地源热泵自动监控系统/节能减排自动化系统/无人值守地源热泵自控系统/地热远程监测系统

地热管理系统(geothermal management system)是为实现地热资源的可持续开发而建立的管理系统。

我司深井地热监测产品系列介绍:

1.0-1000米单点温度检测(普通表和存储表)/0-3000米单点温度检测(普通显示,只能显示温度,没有存储分析软件功能)

2.0-1000米浅层地温能监测/高精度远程地温监测系统采集器采用低功耗、携带方便;物联网NB无线传输至WEB端B/S架构网络;单总线结构,可扩展256个点;进口18B20高精度传感器,在10-85度范围内,精度在0.1-0.2

3. 4.0-10000米分布式多点深层地温监测(采用分布式光纤测温系统细分两大类:1.井筒测试 2.井壁测试

4.0-2000NB型液位/温度一体式自动监测系统(同时监测温度和液位两个参数,MAX耐温125摄氏度)

5.0-7000米全景型耐高温测温成像一体井下电视(同时监测温度和视频图片等)

6. 微功耗采集系统/遥控终端机——地热资源监测系统/地热管理系统(可在换热站同时监测温度/流量/水位/泵内温度/压力/能耗等多参数内容,可实现物联网远程监控,24小时无人值守)

有此类深井地温项目,欢迎新老客户朋友垂询!北京鸿鸥成运仪器设备有限公司

关键词:地热井分布式光纤测温监测系统/分布式光纤测温系统/深井测温仪/深水测温仪/地温监测系统/深井地温监测系统/地热井井壁分布式光纤测温方案/光纤测温系统/深孔分布式光纤温度监测系统/深井探测仪/测井仪/水位监测/水位动态监测/地下水动态监测/地热井动态监测/高温水位监测/水资源实时在线监控系统/水资源实时监控系统软件/水资源实时监控/高温液位监测/压力式高温地热地下水水位计/温泉液位测量/涌井液位测量监测/高温涌井监测水位计方案/地热井水温水位测量监测系统/地下温泉怎么监测水位/ 深井水位计/投入式液位变送器 /进口扩散硅/差压变送器/地源热泵能耗监控测温系统/地源热泵能耗监测自动管理系统/地源热泵温度远程无线监控系统/地源热泵能耗地温远程监测监控系统/建筑能耗监测系统

【地下水】洗井和采样方法对分析数据的影响

 所谓探采结合,是指在保证探矿效果的前提下,实行探矿工程与采掘工程的统筹规划,统一安排,利用采掘工程进行生产探矿,或生产探矿工程能为采矿工作所利用,实行探采结合是我国矿山地质工作实践中总结出来的一套行之有效的工作方法。

 

  (一)探采结合的意义与要求

 

  生产探矿工作贯穿于矿山生产的全过程,它常与采矿工程交叉进行,许多工程互有关系,并往往可以互相利用。实行探采结合可以减少矿山坑道掘进量,降低采掘比,加快生产探矿进度,缩短生产探矿和生产准备周期,降低生产成本,提高探矿工作质量与效果,有利于安全生产和加强生产管理,充分发挥矿山生产能力,并可使矿山坑道系统更趋合理。  实施探采结合时,要求探采双方在工作上必须打破部门界限、实行统一设计,联合设计,统筹施工和综合利用成果,形成一体化工作法;探采结合必须系统的、全面的,必须贯穿于采掘生产的全过程;合理确定施工顺序,在保证“探矿超前”的前提下,探采之间力求做到平行交叉作业;探采结合必须以矿体的一定勘探程度为基础,特别是对地下采矿块段内部矿体连续性应已基本掌握,不致因矿体变化过大导致在底部结构形成后,采准、回采方案的大幅修改,工程的大量报废。在条件不具备的情况下,仍先施工若干单纯的探矿工程。

 

  (二)露天矿山的探采结合

 

  露天采矿在剥离前,一般均已进行一定工程密度的探矿工作,矿体总的边界已经控制。因此,露天采矿的探采结合主要存在于爆破回采阶段。此时能用于生产探矿的生产工程为采场平台、台阶边坡、爆破孔、爆破洞井、爆破矿堆。利用平台与探槽的资料编制平台地质平面图,利用岩心钻及爆破孔揭露的资料编制地质剖面图。  剥离和堑沟,是露天开采的重要采准工程,同时可引起到生产探矿作用。通过剥离,可重点查明矿体在平面上的四周边界和矿体的夹石分布。通过堑沟,可掌握矿体上。下具体界线。

 

  采矿平台和爆破孔,是采矿过程中的直接生产工程,可以直接利用平台上部和侧面已暴露部分进行素描、编录、取样等地质工作,确定在平台上的矿体边界、地质构造界线、夹石分布、矿山品位和类型等,并编制平台实测地质平面图。在该图的基础上,进行穿爆孔设计。根据穿爆孔岩粉取样化验结果和爆破孔岩粉颜色的变化,进一步圈定矿体的局部边界,指导采矿工作的进行,同时根据爆破孔孔低取样资料,编制下一台阶预测平台地质平面图,作为平台开拓设计的依据。

 

  (三)地下开采的探采结合

 

  1.开拓阶段的探采结合  开拓阶段各种工程用于探采结合的可能性分为下述几类: 控制性工程  包括竖井、斜井、主平窿。无探矿作用。 联络工程  石门、井底车场等,也不能起探矿作用。  探采结合工程  包括脉内沿脉、运输穿脉等,这些工程大部分切穿矿脉,能起探矿作用。 脉外开拓工程  此类工程对矿体产状、形态、边界的空间位置依赖性较大,必要在探矿后才能施工,不能实行探采结合。

 

  纯生产探矿工程  包括探矿穿脉、天井、忙中段、坑内钻等,这类工程对生产无直接生产意义。  开拓工程与生产探矿结合的步骤和方法:

 

  (1)地质人员提供阶段开拓的预测地质平面图及矿石品位、储量资料;

 

  (2)在充分考虑阶段地质条件和探矿要求的基础上,采矿人员拟定阶段开拓方案;

 

  (3)进行探采联合设计,采矿人员布置开拓工程,地质人员布置探矿工程,双方共同选择探采结合工程,并进行工程的施工设计;

 

  (4)地采双方联合确定工程施工顺序并统筹施工;施工中,地质人员与测量人员配合掌握施工工程的方向、进度、目的,采矿人员控制技术措施;

 

  (5)阶段开拓工程施工结束后,地质人员视情况补充一定探矿工程,再整理开拓阶段生产勘探所获资料,为转入采准阶段的探采结合创造条件。

 

  2.采准阶段的探采结合

 

  采准阶段的探采结合,是以采矿块段(采场。采区、盘区)为单元,属于单体性生产探矿范围。  采准工程与生产探矿工程结合的步骤:

 

  (1)地质人员提供采矿块段地质平面图、剖面图和矿体纵投影图;

 

  (2)采矿人员依据资料初步确定采矿方法及采准方案;

 

  (3)地采双方共同商定采准阶段的探采结合方案,统筹是从采准工程中,选定能达到探矿目的的而又允许优先施工的工程作为探采结合工程,有时与分段等生产工程结合探采结合层;

 

  (4)编制块段探采结合施工设计,利用采准工程进行生产探矿的工程,一般由采矿人员设计,纯生产探矿工程由地质人员设计;

 

  (5)确定工程施工顺序,首先掘进离矿体较远或对矿体空间位置依赖性不大的工程,以接近矿体和构成通路然后选择某些能起探矿作用又符合探矿间距的采准工程作为探采结合工程,并优先施工。配合部分纯生产探矿工程,对矿块内部的矿体边界、夹石、构造、矿石质量及品位变化情况进行控制;

 

  (6)地质人员整理块段探采结合工程施工所获地质资料,提供采矿人员进行全面采准工程设计;

 

  (7)采准工程全面施工。施工结束后,地质人员视情况补充必要的探矿工程,再整理采准阶段生产勘探阶段所获地质资料,为转入块段矿石回采作好准备。

 

  采准阶段的探采结合方法,随矿体地质条件和采矿方法的不同而有别:

 

  (1)壁式采矿方法的采场  此法适用于薄而缓倾斜的矿体。结构简单,采准工程多布置于矿体内,能用于探矿。此种采矿方法沿矿体走向布置。先从脉外大巷开溜井进入矿体下,切割沿脉和倾斜井为探采结合工程,斜井中的探矿笑穿脉、短天井,用于探矿体厚度。这些工程也为探采结合工程,如地质构造复杂时,还应补充纯生产勘探工程。

 

  (2)留矿法采场  此类采矿方法适用于薄而陡倾斜的矿块,采场多为沿矿体走向布置,这类采矿方法分有底柱留矿法及无底柱留矿法。

 

  (3)分段法(空场法)采场  此类采矿方法适用于中厚、陡倾斜矿体,电耙道沿矿体走向布置。采场可分二或三个阶段,分段高10~15米,用中深孔凿岩,采场各天井为探采结合工程。它可以控制矿体盘界线,用天井辅穿或天井里打钻孔代替幅穿探矿体上盘界线,再于分段凿岩巷道里布置扇形坑内钻进行矿体的重新圈定。

 

  (4)沿矿体走向布置的有底柱分段崩落法采场  此法适用于中厚、缓倾斜矿体的采矿,即一个阶段分二或三个分段,分段高15~20米左右,利用电耙道出矿,电耙道于脉外沿脉沿矿体走向布置,电耙道长为30~40米。

 

  (5)垂直矿体走向布置的有底柱分段崩落法采场  当矿体为厚和极厚时,电耙道垂直矿体走向布置,一般间距为15米左右。作为采准工程,常要求这些穿脉耙道工程穿过矿体界线,这样,这些坑道变*起到加密工程的作用。

 

  (6)无底柱分段崩落法采场  此法适用于厚矿体,进路工程多为垂直矿体走向布置,进路间距一般为10米,分段高10米,进路工程大部分位于矿体内部,各个进路和盘切割井可作为探采结合工程。依据这些探采结合工程的地质资料进行矿体的重新圈定和储量计算,提供备采设计利用。

 

  3.回采阶段的探采结合

 

  经过采准阶段的探采结合,重新圈定矿体,一般已经控制柱矿体的形态和质量。对于形态变化复杂的矿体,为了更准确地掌握矿体的变化,应该充分利用会采阶段的切割层。回采分层、爆破中深孔等进行一次生产探矿,进行矿体边界的再次圈定,正确指导下一步的回采工作。

 

全自动野外地温监测系统/冻土地温自动监测系统

地源热泵分布式温度集中测控系统

矿井总线分散式温度测量系统方案

矿井分散式垂直测温系统/地热普查/地温监测哪家好选鸿鸥

矿井测温系统/矿建冻结法施工温度监测系统/深井温度场地温监测系统

 

TD-016C型 地源热泵能耗监控测温系统

产品关键词:地源热泵测温,地埋管测温,浅层地温在线监测系统,分布式地温监测系统

此款系统专门为地源热泵生产企业,新能源技术安装公司,地热井钻探公司以及节能环保产业等单位设计,通过连接我司单总线地热电缆,以及单通道或多通道485接口采集器,可对接到贵司单位的软件系统。欢迎各类单位以及经销商详询!此款设备支持贴牌,具体价格按量定制。

RS485竖直地埋管地源热泵温度监测系统【产品介绍】

    地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。较传统的测温电缆设计方法,单总线测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

   采集服务器通过总线将现场与温度采集模块相连,温度采集模块通过单总线将各温度传感器采集到的数据发到总线上。每个采集模块可以连接内置1-60个温度传感器的测温电缆相连。 本方案可以对大型试验场进行温度实时监测,支持180口井或测温电缆及1500点以上的观测井温度在线监测。

RS485竖直地埋管地源热泵温度监测系统

1. 地埋管回填材料与地源热泵地下温度场的测试分析 

2. U型垂直埋管换热器管群间热干扰的研究 

3. U型管地源热泵系统性能及地下温度场的研究 

4. 地源热泵地埋管的传热性能实验研究 

5. 地源热泵地埋管换热器传热研究 

6. 埋地换热器含水层内传热的数值模拟与实验研究,埋地换热器含水层内传热的数值模拟与实验研究。

竖直地埋管地源热泵温度测量系统,主要是一套*基于现场总线和数字传感器技术的在线监测及分析系统。它能有对地源热泵换热井进行实时温度监测并保存数据,为优化地源热泵设计、探讨地源热泵的可持续运行具有参考价值。

二、RS485竖直地埋管地源热泵温度监测系统本系统的重要特点:

1.结构简单,一根总线可以挂接1-60根传感器,总线采用三线制,所有的传感器就灯泡一样,可以直接挂在总线上.

2.总线距离长.采用强驱动模块,普通线,可以轻松测量500米深井.

3.的深井土壤检测传感器,防护等级达到IP68,可耐压力高达5Mpa. 

4.定制的防水抗拉电缆,增强了系统的稳定性和可靠特点总结:高性价格比,根据不同的需求,比你想象的*.

针对U型管口径小的问题,本系统是传统铂电阻测温系统理想的替代品. 可应用于:

1.地埋管回填材料与地源热泵地下温度场的测试分析 

2.U型垂直埋管换热器管群间热干扰的研究 

3. U型管地源热泵系统性能及地下温度场的研究 

4. 地源热泵地埋管的传热性能实验研究 

5. 地源热泵地埋管换热器传热研究 

6. 埋地换热器含水层内传热的数值模拟与实验研究。

   本系统技术参数:支持传感器:18B20高精度深井水温数字传感器,测井深:1000米,传感器耐压能力:5Mpa ,配置设备:远距离温度采集模块+测井电缆+传感器,

RS485竖直地埋管地源热泵温度监测系统系统功能: 

1、温度在线监测 

2、 报警功能 

3、 数据存储 

4、定时保存设置

5、历史数据报表打印 

6、历史曲线查询等功能。

【技术参数】

1、温度测量范围:-10℃ ~ +100℃

2、温度精度: 正负0.5℃ (-10℃ ~ +80℃)

3、分  辨 率: 0.1℃

4、采样点数: 小于128

5、巡检周期: 小于3s(可设置)

6、传输技术: RS485、RF(射频技术)、GPRS

7、测点线长: 小于350米

8、供电方式: AC220V /内置锂电池可供电1-3 

9、工作温度: -30℃ ~ +80℃

10、工作湿度: 小于90%RH

11、电缆防护等级:IP66

使用注意事项:

防水感温电缆经测试与检测,具备一定的防水和耐水压能力,使用时,请按以下方法操作与使用:
1. 使用时,建议将感温电缆置于U形管内以方便后期维护。
若置与U形管外,请小心操作,做好电缆防护,防止在安装过程中电缆被划伤,以保持电缆的耐水压能力和使用寿命。
2. 电缆中不锈钢体为传感器所在位置,因温度为缓慢变化量,正常使用时,请等待测物热平衡后再进行测量。
3. 电缆采用三线制总线方式,红色为电源正,建议电源为3-5V DC,黑色为电源负,兰色为信号线。请严格按照此说明接线操作。
4. 系统理论上支持180个节点,实际使用应该限制在150个节点以内。
5.系统具备一定的纠错能力,但总线不能短路。
6. 系统供电,当总线距离在200米以内,则可以采用DC9V给现场模块供电,当距离在500米之内,可以采用DC12V给系统供电。

【北京鸿鸥成运仪器设备有限公司提供定制各个领域用的测温线缆产品介绍】

地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。

   由北京鸿鸥成运仪器设备有限公司推出的地源热泵温度场测控系统,硬件采取*ARM技术;上位机软件使用编程语言技术设计,富有人性、直观明了;测温传感器直接封装在电缆内部,根据客户距离进行封装。目前该系统广泛应用于地源热泵地埋管、地源热泵温度场检测、地源热泵地埋换热井、地源热泵竖井及地源热泵温度场系统进行地温监测,本系统的可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

地源热泵诊断中土壤温度的监测方法:
  为了实现地源热泵系统的诊断,必须首先制定保证系统正常运行的合理的标准。在系统的设计阶段,地下土壤温度的初始值是一个重要的依据参数,它也是在系统运行过程中可能产生变化的参数。如果在一个或几个空调采暖周期(一般一个空调采暖周期为1年)后,系统的取热和放热严重不平衡,则这个初始温度会有较大的变化,将会大大降低系统的运行效率。所以设计选用土壤温度变化曲线作为诊断系统是否正常的标准。
  首先对地源热泵系统所控制的建筑物进行全年动态能耗分析,即输入建筑物的条件,包括建筑的地理位置、朝向、外形尺寸、围护结构材料和房间功能等条件,计算出该区域全年供暖、制冷的负荷,我们根据该负荷,选择合适的系统配置,即地埋管数量以及必要的辅助冷热源,并动态模拟计算地源热泵植筋加固系统运行过程中土壤温度的变化情况,得到初始土壤温度标准曲线。采用满足土壤温度基本平衡要求的运行方案运行,同时系统实时监测土壤温度变化情况,即依靠埋置在地下的测温传感器监测土壤的温度,并且将测得的温度传递给地源热泵系统。

浅层地温能监测系统概况:

地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷,在埋地管换热器设计中,土壤的导热系数是很重要的参数,而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地源热泵地埋测温电缆的设计显得尤其重点。较传统的地源热泵测温电缆设计方法,北京鸿鸥成运仪器设备有限公司研发的数字总线式测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

   为方便研究土壤、水质等环境对空调换热井能效等方面的可靠研究或温度测量,目前地源热泵地埋管测温电缆对于地埋换热井,有口径小,深度较深等特点的测温方式,如果测量地下120米的地源热泵井,要放12路线PT100传感器。12根测温线缆若平均放置,即10米放一个探头,则所需线材要1500米,在井上需配置一个至少12通道的巡检仪,若需接入电脑进行温度实时记录,该巡检仪要有RS232或RS485功能,根据以上成本估计,这口井进行地热测温至少成本在8000元,虽然选择高精度的PT100可提高系统的测温精度,但对模拟量数据采集,提供精度的有效办法是提供仪器的AD转换器的位数,即提供巡检仪的测量精度,若能够在长距离测温的条件下进行多点测温,能够做到0.5度的精度,则是非常不容易。针对这一需求,北京鸿鸥成运仪器设备有限公司推出“数字总线式地源热泵地埋管测温电缆”及相应系统。矿井深部地温监测,地源热泵温度监测研究,地源热泵温度测量系统,浅层地热测温系统。

地源热泵数字总线测温线缆与传统测温电缆对比分析:
   传统的温度检测以热敏电阻、PT100或PT1000作为温度敏感元件,因其是模拟量,要对温度进行采集,若需较高精度,需要选择12位或以上的AD转换及信号处理电路,近距离时,其精度及可靠性受环境影响不大,但当大于30米距离传输时,宜采用三线制测方式,并需定期对温度进行校正。当进行多点采集时,需每个测温点放置一根电缆,因电阻作为模拟量及相互之间的干扰,其温度测量的准确度、系统的精度差,会受环境及时间的影响较大。模块量传感器在工作过程中都是以模拟信号的形式存在,而检测的环境往往存在电场、磁场等不确定因素,这些因素会对电信号产生较大的干扰,从而影响传感器实际的测量精度和系统的稳定性,每年需要进行校准,因而它们的使用有很大的局限性。

    北京鸿鸥成运仪器设备有限公司研发的总线式数字温度传感器,具有防水、防腐蚀、抗拉、耐磨的特性,总线式数字温度传感器采用测温芯片作为感应元件,感应元件位于传感器头部,传感器的精度和稳定性决定于美国进口测温芯片的特性及精度级别,无需校正,因数据传输采用总线方式,总线电缆或传感器外径可做得很小,直径不大于12mm,且线路长短不会对传感器精度造成任何影响。这是传统热电阻测温系统*的优势。所以数字总线式测温电缆是地源热泵地埋管管测温、地温能深井和地层温度监测理想的设备。数字总线式数据传感器本身自带12位高精度数据转换器和现场总线管理器,直接将温度数据转换成适合远距离传输的数字信号,而每个传感器本身都有唯的识别ID,所以很多传感器可以直接挂接在总线上,从而实现一根电缆检测很多温度点的功能。

地源热泵大数据监控平台建设

一、系统介绍

1、建设自动监测监测平台,可监测大楼内室内温度;热泵机组空调侧和地源侧温度、

压力、流量;系统空调侧和地源侧温度、压力、流量;热泵机组和水泵的电压、电流、功率、

电量等参数;地温场的变化等,实现热泵机组运行情况 24 小时实时监测,异常情况预

警,做到真正的无人值守。可对热泵系统的长期运行稳定性、系统对地温场的影响以及能效

比等进行综合的科学评价,为进一步示范推广与系统优化的工作提供数据指导依据。

具体测量要求如下:

1)各热泵机组实时运行情况;

2)室内温度监测数据及变化曲线;

3)室外环境温度数据及变化曲线;

4)机房内空调侧出回水温度、压力、流量等监测数据及变化曲线;

5)机房内地埋管侧出回水温度、压力、流量等监测数据及变化曲线;

6)机房内用电设备的电流、电压、功率、电能等监测数据及变化曲线;

7)地温场内不同深度的地温监测数据及变化曲线;

8)能耗综合分析、系统 COP 分析以及系统节能量的评价分析。

2、自动监测平台建成以后可以对已经安装自动监测设备的地热井实施自动监测的数据分

析展示,可实现地热井和回灌井的水位、水温、流量实施传输分析,并可实现数据异常情况预

警,做到实时监管,有地热井运行的稳定性。

1)开采水量及回水水量的流量监测及变化曲线;

2)开采水温及回水水温的温度监测及变化曲线;

3)开采井井内水位监测及变化曲线;

 

 

推荐产品如下:

地源热泵温度监控系统/地源热泵测温/多功能钻孔成像分析仪/井下电视/钻孔成像仪/地热井钻孔成像仪/井下钻孔成像仪/数字超声成像测井系统/多功能超声成像测井系统/超声成像测井系统/超声成像测井仪/成像测井系统/多功能井下超声成像测井仪/超声成象测井资料分析系统/超声成像

关键词:地热水资源动态监测系统/地热井监测系统/地热井监测/水资源监测系统/地热资源回灌远程监测系统/地热管理系统/地热资源开采远程监测系统/地热资源监测系统/地热管理远程系统/地热井自动化远程监控/地热资源开发利用监测软件系统/地热水自动化监测系统/城市供热管网无线监测系统/供暖换热站在线远程监控系统方案/换热站远程监控系统方案/干热岩温度监测/干热岩监测/干热岩发电/干热岩地温监测统/地源热泵自动控制/地源热泵温度监控系统/地源热泵温度传感器/地源热泵中央空调中温度传感器/地源热泵远程监测系统/地源热泵自控系统/地源热泵自动监控系统/节能减排自动化系统/无人值守地源热泵自控系统/地热远程监测系统

地热管理系统(geothermal management system)是为实现地热资源的可持续开发而建立的管理系统。

我司深井地热监测产品系列介绍:

1.0-1000米单点温度检测(普通表和存储表)/0-3000米单点温度检测(普通显示,只能显示温度,没有存储分析软件功能)

2.0-1000米浅层地温能监测/高精度远程地温监测系统采集器采用低功耗、携带方便;物联网NB无线传输至WEB端B/S架构网络;单总线结构,可扩展256个点;进口18B20高精度传感器,在10-85度范围内,精度在0.1-0.2

3. 4.0-10000米分布式多点深层地温监测(采用分布式光纤测温系统细分两大类:1.井筒测试 2.井壁测试

4.0-2000NB型液位/温度一体式自动监测系统(同时监测温度和液位两个参数,MAX耐温125摄氏度)

5.0-7000米全景型耐高温测温成像一体井下电视(同时监测温度和视频图片等)

6. 微功耗采集系统/遥控终端机——地热资源监测系统/地热管理系统(可在换热站同时监测温度/流量/水位/泵内温度/压力/能耗等多参数内容,可实现物联网远程监控,24小时无人值守)

有此类深井地温项目,欢迎新老客户朋友垂询!北京鸿鸥成运仪器设备有限公司

关键词:地热井分布式光纤测温监测系统/分布式光纤测温系统/深井测温仪/深水测温仪/地温监测系统/深井地温监测系统/地热井井壁分布式光纤测温方案/光纤测温系统/深孔分布式光纤温度监测系统/深井探测仪/测井仪/水位监测/水位动态监测/地下水动态监测/地热井动态监测/高温水位监测/水资源实时在线监控系统/水资源实时监控系统软件/水资源实时监控/高温液位监测/压力式高温地热地下水水位计/温泉液位测量/涌井液位测量监测/高温涌井监测水位计方案/地热井水温水位测量监测系统/地下温泉怎么监测水位/ 深井水位计/投入式液位变送器 /进口扩散硅/差压变送器/地源热泵能耗监控测温系统/地源热泵能耗监测自动管理系统/地源热泵温度远程无线监控系统/地源热泵能耗地温远程监测监控系统/建筑能耗监测系统

【地下水】洗井和采样方法对分析数据的影响
Baidu
map