产品列表 / products
(一)气象资料
调查气温、气压、风速、风向、降雨量、蒸发量及其历年月平均值和两极值等。 一般情况下可以利用矿区附近的气象站资料,但在离气象站30km以外时,应单独设站观测上述各要素。
(二)地貌
地貌的调查应与分析研究矿井水文地质条件密切配合,着重观察描述与地下水富集有关或由地下水活动引起的地貌现象。 调查由开采和地下水活动而引起的滑坡、塌陷、人工湖等地貌变化及岩溶发育矿区的各种岩溶地貌形态,包括:
1.平原、丘陵、山地、盆地等基本地貌单元的调查;
2.河谷地貌的调查;
3.河流阶地的调查;
4.冲沟的调查;
5.微地貌的调查。
(三)地质
1.第四系地层调查
调查第四系松散覆盖层、基岩露头的时代、地层的层次、岩性、厚度、颜色、岩相、结构与构造特征、特殊夹层、各层间的接触关系、所含化石、有无古河床的存在、富水性及地下水的露头点所处的地貌部位等,划分出含水层或相对隔水层。
2.基岩地层调查
调查基岩地层岩石名称、颜色、成分、结构和构造、产状、岩相变化、成因类型、特征标志、厚度(单层、分层和总厚)、地层年代和接触关系等,划分出基岩含水层和隔水层。
调查碎屑岩的颗粒大小、形状、成分、分选情况、胶结类型和胶结物的成分、层理、层面构造和结核等;调查泥质岩类的物质成分、结构、层面构造;调查碳酸岩类的化学成分、结晶情况、特殊的结构和构造、层面特征、可溶性与岩溶现象等; 调查火成岩的成因类型、产状、规模、与围岩的接触关系、原生裂隙和岩脉等; 调查变质岩的成因分类、变质类型、结构、构造、片理、劈理等。
(四)含水层与隔水层
1.调查含水层和隔水层的岩性结构特点 调查松散地层的亚砂土相对于粘土是含水的,相对砂砾石层又可视为隔水层;煤系中砂岩相对页岩是含水层,相对富水的石灰岩岩溶含水层可视为隔水层。
2.调查矿井长期疏干含水层(组)使含水层性质改变 煤系顶扳上部的含水层,由于开采疏干,位于降落漏斗范围内的含水层孔隙中储存的水,通过采动产生的导水裂隙流向井巷,使含水层变为透水层;底板承压含水层由于疏干,承压区转变为无压区。在矿区补充水文地质调查中,除正常调查外,对煤层底板含水层和隔水层应有所侧重。
3.调查顶板含水层的水位、水质变化程度 调查含水层被疏干或降压时导水裂隙带发育高度与主要含水层的关系,地面塌陷位置与矿井水的关系,含水层中地下水的补给、径流、排泄条件的变化等,预测补给半径扩展速度、范围和矿井排水量的变化。
4.调查底扳含水层的厚度、水压、空隙率、富水性 提出疏水降压的安全水压值以及控制水压的安全高度,将含水层的静水压力控制在安全水压范围内,达到只降压、不疏干的目的。
5.隔水层的调查 调查隔水层岩性、厚度、力学强度及分布范围。 隔水层在矿井疏降水的过程中,起着阻隔水流的作用;主要隔水层在煤层开采后不受破坏,完整的隔水层可以减少顶板含水层水对矿井的补给;同时,阻止大气降水、地表水向底板承压含水层渗入。此外,还应了解煤厚、开采方法和顶扳管理方法,通过改变开采方法、改善顶板管理来保护隔水层。
(五)地质构造
在煤田勘探过程中,通过钻探等手段基本查清了井田内的主要断层,但一些小断层往往易被遗漏;某些地段由于工程量控制不足,一些较大的断层或裂隙的特点难以查清。
1.在建井和开采时,必须对巷道揭露的每一条断层进行详细的观查、记录和分析研究,对所揭露的断层应作素描图,裂隙发育带应选择有代表性的地段、进行裂隙统计;
2.调查断裂构造的形态、产状、规模、性质、断层断距、破碎带的范围、充填或胶结程度,断层带两侧岩性和裂隙发育程度,断层带的充水状态,断层在延展方向是否切割了大的含水体和含水断层等及断层导水性; 3.调查有无泉水出露、水量大小等,了解泉的性质和观测泉流量,采水样分析水质,分析补给水源; 4.查明褶皱构造形态、位置、规模、沿走向的变化规律和倾伏情况。
(六)地表水体
1.调查与搜集矿区河流、渠道、湖泊、积水区、山塘、水库的历年水位、流量、积水量、洪水淹没范围、含砂量、水质和地表水体与下伏含水层的关系等。
2.调查矿区范围内的河流、湖泊、池塘、沟渠、水库、塌陷坑等地表水体的位置及周围的地形特征。
3.调查地表水体的形态,内容包括:河流(沟渠)的宽度、长度和深度;湖泊、水库、池塘、塌陷坑等水体面积和积水深度,塌陷坑或煤系岩层露头带有无地表水的渗漏等。
4.调查地表水体附近的地层岩性、地貌条件及其所处的构造部位,查明地表水体是否影响煤层的开采。
5.调查河流、湖泊的水位、流量(或积水量)、流速、含砂量等。
6.调查水的物理性质,如水温、颜色、气味、透明度,提取水样做化学分析。
7.调查水量、水位、水温的变化,调查历*洪水痕迹和受灾情况等。
8.调查和搜集河流上、下游间流量的变化、支流的水量、河床沿途的变化情况,特别要重视枯水期地表河流流量的测定。
9.调查地表水的利用情况及受污染状况。
(七)井(孔)泉
调查井(孔)泉的位置、标高、深度、出水层位、涌水量、水位、水质、水温、有无气体溢出、流出类型及其补给水源。并素描泉水出露的地形、地质平面图、剖面图。
1.井、钻孔
(1)调查井、孔的位置及所处地貌部位,井、孔的深度、结构、形状及口径。
(2)调查井、孔所穿越的地层剖面,确定含水层的位置、厚度和含水性质。
(3)调查井、孔水位、水温和涌水量的变化情况,进行简易抽水试验,取水样做化学分析,调查收集钻孔抽水试验和水文地质观测资料。
(4)调查自流井出水层位和隔水顶板的岩性、水头高度及流量变化情况。
2.泉的调查
(1)调查泉水出露的地形、地貌的部位、标高及其与当地基地面的相对高差。
(2)调查泉水出露处的地质构造条件和涌出地面时的特点。
(3)根据地质构造与泉的特点,判断补给泉水的含水层,绘制泉水出露处的素描图。
(4)调查、观测泉水的物理性质,取水样做化学分析,测量泉水的流量和水温,并了解流量的动态特征。
(八)古井老窑调查
1.调查古井老窑的位置及开采、充水、排水、停采原因等情况,察看地面塌陷地形,圈出采空区,并估算积水量。
2.调查废井或老窑的井口位置及附近地形特征,井口及其附近地面的标高;井筒性质(竖井、斜井)、井口形状及填充状况;观测塌陷的地面形态;调查附近有无地表水体及其与地表水体的距离。
3.调查建井年月、生产能力及开采概况,井深、井简直径、开采的煤层层数及名称、采煤方法、顶板管理、巷道布置、采空面积与深度、通风、运输、提升、排水情况、巷道规格、支护、停采报废原因等。
4.调查收集地质资料:煤系地质时代、煤层及各分层厚度及其变化、层间距、煤层顶底板岩性特征、井田地质构造方向、褶皱形态、断层产状、断距及其变化、地质储量及残留煤柱大小和与邻近老窑、矿井采空区的关系等。
5.调查收集水文地质资料:开凿井筒时的涌水量;出水岩层的岩性、厚度及富水性;开采期间井下涌水量的变化;透水点类型、其分布特征与地质构造关系;突水次数及水患情况;停采后积水量的估计;矿井水的物理性质和化学成分(或取水样进行化学分析)。
6.报废的矿井除现场观察外,主要是收集采掘工程图、地质及水文地质资料、矿井报废报告。对老窑无资料可查者,主要靠现场观察、测绘和访问,必要时还应进行物探和钻探。
(九)小煤矿调查
1.调查小煤矿的位置、范围、开采煤层、地质构造、采煤方法、采出煤量、隔离煤柱、与大矿的空间关系,并搜集系统完整的采掘工程平面图及有关资料。对已报废小井的资料,必须存档备查。
2.对于生产小煤矿,还应调查其生产安排、排水能力、井巷出水层位、水质、涌水量、充水因素、与大矿之间的水害关系。
(十)地面岩溶调查
1.一般性调查 调查岩溶发育的形态、分布范围。对地下水运动有明显影响的进水口、出水口和通道,应进行详细调查,必要时可进行连通试验和暗河测绘工作。要分析岩溶发育规律、地下水径流方向,圈定补给区,测定补给区的渗漏情况,估算地下径流量。有岩溶塌陷的区域,还应进行岩溶塌陷的测绘工作。
2.裸露型地区岩溶调查 调查与开采煤层有关的岩溶含水层的分布范围和隔水边界,调查地下水的补给条件、水位、动态和水质特征及其与区域地质构造、岩性、地貌条件的关系;调查全部天然水点,详细研究岩溶泉水的出露条件、控制因素,根据泉水出露的地形地质条件,圈定汇水区,实测、访问或根据洪水痕迹推断其水位与流量的变幅,观察地下河系发育特征,调查控制暗河发育的断裂构造、褶皱轴及各主导裂隙的分布和岩溶层呈条带展布的规律,圈定地下河系的补给面积;调查地表水与地下水在不同水文地质单元的相应转化关系;在水质受污染的地区,注意调查污染源和污染方式与途径。在生产矿区调查因采矿引起的浅蚀现象,以及矿井突水时,井下有无涌砂涌水现象等。
3.覆盖型地区岩溶调查 调查覆盖层的总厚度,分层的岩性、厚度、成因,其中含水层的分布、富水性、水质及其底部含水层同岩溶含水层之间的接触关系与水力;分析推断覆盖层下岩溶岩层不同岩性或非岩溶岩层的分布、地质构造及岩溶水的汇水条件;调查岩溶含水层的埋藏深度和岩溶含水层富水地段,主要通道的分布规律及其水质、水量特征;浅覆盖地区地表各种岩溶形态的展布方向,排列形式与地层、地质构造的关系,并判断下伏岩溶洞穴通道的情况;调查地表水与地下水的水力;当覆盖层为透水层时,还需注意工农业污水对岩溶地下水的污染。
4.埋藏型地区岩溶调查 调查与开采有关的煤层顶底板各岩溶含水层的埋藏深度、岩性、厚度、岩溶洞隙率、水位、富水性及水质特征,褶皱形态和断裂构造对岩溶发育分布的控制作用;调查同一水文地质单元各深埋型岩溶含水层露头带的水力交替运动条件及其对岩溶发育的影响;调查古岩溶的形态存在的部位、规模、充填情况及其对现代地下水循环所起的作用。 5.岩溶水点及地下暗河调查
(1)岩溶水点的地面标高及所处地貌单元的位置和特征,岩溶水点出露的地层层位、岩性、产状及构造部位,构造与岩溶发育的关系。
(2)观测岩溶水点的水位标高和埋深、水的物理性质、气温、洞温,并取水样;观测溶洞内水流的流向和流速、洞内瀑布的成因和落差、地下湖或地下河的规模和流经地段以及水生动物等的活动情况;调查水位及流量的动态变化,观测洪水痕迹,测量水深。部分岩溶水点应实测水文地质剖面图,并素描或照相。
(3)每个岩溶水点,应用联通试验查清其与邻近水点及整个地下水系的关系,安排长期动态观测工作。
全自动野外地温监测系统/冻土地温自动监测系统
地源热泵分布式温度集中测控系统
矿井总线分散式温度测量系统方案
矿井分散式垂直测温系统/地热普查/地温监测哪家好选鸿鸥
矿井测温系统/矿建冻结法施工温度监测系统/深井温度场地温监测系统
TD-016C型 地源热泵能耗监控测温系统
产品关键词:地源热泵测温,地埋管测温,浅层地温在线监测系统,分布式地温监测系统
此款系统专门为地源热泵生产企业,新能源技术安装公司,地热井钻探公司以及节能环保产业等单位设计,通过连接我司单总线地热电缆,以及单通道或多通道485接口采集器,可对接到贵司单位的软件系统。欢迎各类单位以及经销商详询!此款设备支持贴牌,具体价格按量定制。
RS485竖直地埋管地源热泵温度监测系统【产品介绍】
地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。较传统的测温电缆设计方法,单总线测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。
采集服务器通过总线将现场与温度采集模块相连,温度采集模块通过单总线将各温度传感器采集到的数据发到总线上。每个采集模块可以连接内置1-60个温度传感器的测温电缆相连。 本方案可以对大型试验场进行温度实时监测,支持180口井或测温电缆及1500点以上的观测井温度在线监测。
RS485竖直地埋管地源热泵温度监测系统:
1. 地埋管回填材料与地源热泵地下温度场的测试分析
2. U型垂直埋管换热器管群间热干扰的研究
3. U型管地源热泵系统性能及地下温度场的研究
4. 地源热泵地埋管的传热性能实验研究
5. 地源热泵地埋管换热器传热研究
6. 埋地换热器含水层内传热的数值模拟与实验研究,埋地换热器含水层内传热的数值模拟与实验研究。
竖直地埋管地源热泵温度测量系统,主要是一套*基于现场总线和数字传感器技术的在线监测及分析系统。它能有对地源热泵换热井进行实时温度监测并保存数据,为优化地源热泵设计、探讨地源热泵的可持续运行具有参考价值。
二、RS485竖直地埋管地源热泵温度监测系统本系统的重要特点:
1.结构简单,一根总线可以挂接1-60根传感器,总线采用三线制,所有的传感器就灯泡一样,可以直接挂在总线上.
2.总线距离长.采用强驱动模块,普通线,可以轻松测量500米深井.
3.的深井土壤检测传感器,防护等级达到IP68,可耐压力高达5Mpa.
4.定制的防水抗拉电缆,增强了系统的稳定性和可靠特点总结:高性价格比,根据不同的需求,比你想象的*.
针对U型管口径小的问题,本系统是传统铂电阻测温系统理想的替代品. 可应用于:
1.地埋管回填材料与地源热泵地下温度场的测试分析
2.U型垂直埋管换热器管群间热干扰的研究
3. U型管地源热泵系统性能及地下温度场的研究
4. 地源热泵地埋管的传热性能实验研究
5. 地源热泵地埋管换热器传热研究
6. 埋地换热器含水层内传热的数值模拟与实验研究。
本系统技术参数:支持传感器:18B20高精度深井水温数字传感器,测井深:1000米,传感器耐压能力:5Mpa ,配置设备:远距离温度采集模块+测井电缆+传感器,
RS485竖直地埋管地源热泵温度监测系统系统功能:
1、温度在线监测
2、 报警功能
3、 数据存储
4、定时保存设置
5、历史数据报表打印
6、历史曲线查询等功能。
【技术参数】
1、温度测量范围:-10℃ ~ +100℃
2、温度精度: 正负0.5℃ (-10℃ ~ +80℃)
3、分 辨 率: 0.1℃
4、采样点数: 小于128
5、巡检周期: 小于3s(可设置)
6、传输技术: RS485、RF(射频技术)、GPRS
7、测点线长: 小于350米
8、供电方式: AC220V /内置锂电池可供电1-3年
9、工作温度: -30℃ ~ +80℃
10、工作湿度: 小于90%RH
11、电缆防护等级:IP66
使用注意事项:
防水感温电缆经测试与检测,具备一定的防水和耐水压能力,使用时,请按以下方法操作与使用:
1. 使用时,建议将感温电缆置于U形管内以方便后期维护。
若置与U形管外,请小心操作,做好电缆防护,防止在安装过程中电缆被划伤,以保持电缆的耐水压能力和使用寿命。
2. 电缆中不锈钢体为传感器所在位置,因温度为缓慢变化量,正常使用时,请等待测物热平衡后再进行测量。
3. 电缆采用三线制总线方式,红色为电源正,建议电源为3-5V DC,黑色为电源负,兰色为信号线。请严格按照此说明接线操作。
4. 系统理论上支持180个节点,实际使用应该限制在150个节点以内。
5.系统具备一定的纠错能力,但总线不能短路。
6. 系统供电,当总线距离在200米以内,则可以采用DC9V给现场模块供电,当距离在500米之内,可以采用DC12V给系统供电。
【北京鸿鸥成运仪器设备有限公司提供定制各个领域用的测温线缆产品介绍】
地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。
由北京鸿鸥成运仪器设备有限公司推出的地源热泵温度场测控系统,硬件采取*ARM技术;上位机软件使用编程语言技术设计,富有人性、直观明了;测温传感器直接封装在电缆内部,根据客户距离进行封装。目前该系统广泛应用于地源热泵地埋管、地源热泵温度场检测、地源热泵地埋换热井、地源热泵竖井及地源热泵温度场系统进行地温监测,本系统的可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。
地源热泵诊断中土壤温度的监测方法:
为了实现地源热泵系统的诊断,必须首先制定保证系统正常运行的合理的标准。在系统的设计阶段,地下土壤温度的初始值是一个重要的依据参数,它也是在系统运行过程中可能产生变化的参数。如果在一个或几个空调采暖周期(一般一个空调采暖周期为1年)后,系统的取热和放热严重不平衡,则这个初始温度会有较大的变化,将会大大降低系统的运行效率。所以设计选用土壤温度变化曲线作为诊断系统是否正常的标准。
首先对地源热泵系统所控制的建筑物进行全年动态能耗分析,即输入建筑物的条件,包括建筑的地理位置、朝向、外形尺寸、围护结构材料和房间功能等条件,计算出该区域全年供暖、制冷的负荷,我们根据该负荷,选择合适的系统配置,即地埋管数量以及必要的辅助冷热源,并动态模拟计算地源热泵植筋加固系统运行过程中土壤温度的变化情况,得到初始土壤温度标准曲线。采用满足土壤温度基本平衡要求的运行方案运行,同时系统实时监测土壤温度变化情况,即依靠埋置在地下的测温传感器监测土壤的温度,并且将测得的温度传递给地源热泵系统。
浅层地温能监测系统概况:
地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷,在埋地管换热器设计中,土壤的导热系数是很重要的参数,而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地源热泵地埋测温电缆的设计显得尤其重点。较传统的地源热泵测温电缆设计方法,北京鸿鸥成运仪器设备有限公司研发的数字总线式测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。
为方便研究土壤、水质等环境对空调换热井能效等方面的可靠研究或温度测量,目前地源热泵地埋管测温电缆对于地埋换热井,有口径小,深度较深等特点的测温方式,如果测量地下120米的地源热泵井,要放12路线PT100传感器。12根测温线缆若平均放置,即10米放一个探头,则所需线材要1500米,在井上需配置一个至少12通道的巡检仪,若需接入电脑进行温度实时记录,该巡检仪要有RS232或RS485功能,根据以上成本估计,这口井进行地热测温至少成本在8000元,虽然选择高精度的PT100可提高系统的测温精度,但对模拟量数据采集,提供精度的有效办法是提供仪器的AD转换器的位数,即提供巡检仪的测量精度,若能够在长距离测温的条件下进行多点测温,能够做到0.5度的精度,则是非常不容易。针对这一需求,北京鸿鸥成运仪器设备有限公司推出“数字总线式地源热泵地埋管测温电缆”及相应系统。矿井深部地温监测,地源热泵温度监测研究,地源热泵温度测量系统,浅层地热测温系统。
地源热泵数字总线测温线缆与传统测温电缆对比分析:
传统的温度检测以热敏电阻、PT100或PT1000作为温度敏感元件,因其是模拟量,要对温度进行采集,若需较高精度,需要选择12位或以上的AD转换及信号处理电路,近距离时,其精度及可靠性受环境影响不大,但当大于30米距离传输时,宜采用三线制测方式,并需定期对温度进行校正。当进行多点采集时,需每个测温点放置一根电缆,因电阻作为模拟量及相互之间的干扰,其温度测量的准确度、系统的精度差,会受环境及时间的影响较大。模块量传感器在工作过程中都是以模拟信号的形式存在,而检测的环境往往存在电场、磁场等不确定因素,这些因素会对电信号产生较大的干扰,从而影响传感器实际的测量精度和系统的稳定性,每年需要进行校准,因而它们的使用有很大的局限性。
北京鸿鸥成运仪器设备有限公司研发的总线式数字温度传感器,具有防水、防腐蚀、抗拉、耐磨的特性,总线式数字温度传感器采用测温芯片作为感应元件,感应元件位于传感器头部,传感器的精度和稳定性决定于美国进口测温芯片的特性及精度级别,无需校正,因数据传输采用总线方式,总线电缆或传感器外径可做得很小,直径不大于12mm,且线路长短不会对传感器精度造成任何影响。这是传统热电阻测温系统*的优势。所以数字总线式测温电缆是地源热泵地埋管管测温、地温能深井和地层温度监测理想的设备。数字总线式数据传感器本身自带12位高精度数据转换器和现场总线管理器,直接将温度数据转换成适合远距离传输的数字信号,而每个传感器本身都有唯的识别ID,所以很多传感器可以直接挂接在总线上,从而实现一根电缆检测很多温度点的功能。
地源热泵大数据监控平台建设
一、系统介绍
1、建设自动监测监测平台,可监测大楼内室内温度;热泵机组空调侧和地源侧温度、
压力、流量;系统空调侧和地源侧温度、压力、流量;热泵机组和水泵的电压、电流、功率、
电量等参数;地温场的变化等,实现热泵机组运行情况 24 小时实时监测,异常情况预
警,做到真正的无人值守。可对热泵系统的长期运行稳定性、系统对地温场的影响以及能效
比等进行综合的科学评价,为进一步示范推广与系统优化的工作提供数据指导依据。
具体测量要求如下:
1)各热泵机组实时运行情况;
2)室内温度监测数据及变化曲线;
3)室外环境温度数据及变化曲线;
4)机房内空调侧出回水温度、压力、流量等监测数据及变化曲线;
5)机房内地埋管侧出回水温度、压力、流量等监测数据及变化曲线;
6)机房内用电设备的电流、电压、功率、电能等监测数据及变化曲线;
7)地温场内不同深度的地温监测数据及变化曲线;
8)能耗综合分析、系统 COP 分析以及系统节能量的评价分析。
2、自动监测平台建成以后可以对已经安装自动监测设备的地热井实施自动监测的数据分
析展示,可实现地热井和回灌井的水位、水温、流量实施传输分析,并可实现数据异常情况预
警,做到实时监管,有地热井运行的稳定性。
1)开采水量及回水水量的流量监测及变化曲线;
2)开采水温及回水水温的温度监测及变化曲线;
3)开采井井内水位监测及变化曲线;
地源热泵温度监控系统/地源热泵测温/多功能钻孔成像分析仪/井下电视/钻孔成像仪/地热井钻孔成像仪/井下钻孔成像仪/数字超声成像测井系统/多功能超声成像测井系统/超声成像测井系统/超声成像测井仪/成像测井系统/多功能井下超声成像测井仪/超声成象测井资料分析系统/超声成像
关键词:地热水资源动态监测系统/地热井监测系统/地热井监测/水资源监测系统/地热资源回灌远程监测系统/地热管理系统/地热资源开采远程监测系统/地热资源监测系统/地热管理远程系统/地热井自动化远程监控/地热资源开发利用监测软件系统/地热水自动化监测系统/城市供热管网无线监测系统/供暖换热站在线远程监控系统方案/换热站远程监控系统方案/干热岩温度监测/干热岩监测/干热岩发电/干热岩地温监测统/地源热泵自动控制/地源热泵温度监控系统/地源热泵温度传感器/地源热泵中央空调中温度传感器/地源热泵远程监测系统/地源热泵自控系统/地源热泵自动监控系统/节能减排自动化系统/无人值守地源热泵自控系统/地热远程监测系统
地热管理系统(geothermal management system)是为实现地热资源的可持续开发而建立的管理系统。
我司深井地热监测产品系列介绍:
1.0-1000米单点温度检测(普通表和存储表)/0-3000米单点温度检测(普通显示,只能显示温度,没有存储分析软件功能)
2.0-1000米浅层地温能监测/高精度远程地温监测系统(采集器采用低功耗、携带方便;物联网NB无线传输至WEB端B/S架构网络;单总线结构,可扩展256个点;进口18B20高精度传感器,在10-85度范围内,精度在0.1-0.2度)
3. 4.0-10000米分布式多点深层地温监测(采用分布式光纤测温系统细分两大类:1.井筒测试 2.井壁测试)
4.0-2000米NB型液位/温度一体式自动监测系统(同时监测温度和液位两个参数,MAX耐温125摄氏度)
5.0-7000米全景型耐高温测温成像一体井下电视(同时监测温度和视频图片等)
6. 微功耗采集系统/遥控终端机——地热资源监测系统/地热管理系统(可在换热站同时监测温度/流量/水位/泵内温度/压力/能耗等多参数内容,可实现物联网远程监控,24小时无人值守)
有此类深井地温项目,欢迎新老客户朋友垂询!北京鸿鸥成运仪器设备有限公司
关键词:地热井分布式光纤测温监测系统/分布式光纤测温系统/深井测温仪/深水测温仪/地温监测系统/深井地温监测系统/地热井井壁分布式光纤测温方案/光纤测温系统/深孔分布式光纤温度监测系统/深井探测仪/测井仪/水位监测/水位动态监测/地下水动态监测/地热井动态监测/高温水位监测/水资源实时在线监控系统/水资源实时监控系统软件/水资源实时监控/高温液位监测/压力式高温地热地下水水位计/温泉液位测量/涌井液位测量监测/高温涌井监测水位计方案/地热井水温水位测量监测系统/地下温泉怎么监测水位/ 深井水位计/投入式液位变送器 /进口扩散硅/差压变送器/地源热泵能耗监控测温系统/地源热泵能耗监测自动管理系统/地源热泵温度远程无线监控系统/地源热泵能耗地温远程监测监控系统/建筑能耗监测系统
【地下水】洗井和采样方法对分析数据的影响 |
上一篇:矿山水文地质调查内容分类
下一篇:井下水文地质调查内容