当前位置:网站首页技术文章 > 影响地下水形成的气象、水文因素

产品列表 / products

影响地下水形成的气象、水文因素

更新时间:2020-08-11 点击量:2298

  除了埋藏很深的古代封存水外,一般的地下水都参与现代水循环。因此,地下水的补给量、储存量与排泄量,以及地下水质的好坏,在很大程度上与当地的气象、水文因素密切相关。对地下水发生显著影响的气象、水文因素主要是降水,蒸发与水文网的分布。

 

  地下水的水质

 

  ⑴地下水的物理性质

 

  ①地下水的比重:地下水的比重决定于所含溶解盐分的含量,地下淡水的比重一般来说与化学纯水相同,其数值为1。溶解盐分含量很高的盐卤水,其比重均大于1。

 

  ②地下水的温度:地下水的温度与地下水的埋藏深度有关。浅埋的地下水温度受气温的影响,具有昼夜和季节变化的特点。温度有昼夜变化的地下水埋深在3一5米以内,即在日常温带以上;温度具有年变化特点的地下水埋深一般在50米以内,即在年常温带以上。年常温带以下的地下水温度则随深度的增加而升高,受地热增温率(温度每升高1时所需要增加的深度)控制。地壳的平均地热增温率为30~33米/,各地由于地质条件不同,地热增温率也不相同,在有地热异常存在的地区,地下水的温度则遵从地热增温率,而受异常热源的控制。根据地下水的温度可把地下水分为低于0的过冷水;0~20的冷水;20~42的温水;42~100的热水和大于100的过热水。

 

  ③地下水的颜色:地下水的颜色取决于它的化学成分与悬浮物。常见的地下水是无色的,但含硫化氢气体时,地下水就呈翠绿色,亚铁含量较高时呈灰蓝色,含锰的化合物时呈暗红色,含有较多氧化铁时则呈红色,含腐植质的沼泽水常呈黄褐色。这些化学成分的含量较低时,并不影响地下水的颜色。

 

  ④地下水的气味与口味:地下水一般是无气味无口味的,但有时也具有强度不同的气味,如地下水中富含硫化氢时则有强烈的臭鸡蛋味等。当地下水中某些离子含量增高时,则出现不同的味道(口味)。例如,富含氯化钠的地下水具咸味,富含氯化镁与硫酸镁时具苦味,富含硫酸钠的具涩味,含大量有机质的具甜味等。所以地下水的味道也与其化学成分有关。

 

  ⑤地下水的导电性:地下水的导电性取决于所含电解质的数量与性质,通常和水的含盐量有直接的关系。因为离子含量越多,离子价则越高,所以水的导电性也就越强。如高矿化度的咸水与低矿化度的淡水相比较,其导电性就大得多。

 

  ⑥地下水的放射性:地下水在不同程度上或多或少地都具有一定的放射性,但一般地下水的放射性是非常低的。仅当地下水与放射性矿床或放射性异常有关时,地下水才出现一定的放射性。

 

  ⑵地下水的化学成分

 

  ①地下水的主要化学成分:地下水不是化学纯水,它的化学成分很复杂,可以从中找到很多人所共知的元素,这些元素成分以离子、气体、分子和胶体状态存在。地下水中所含的化学成分及其富集情况,与这些元素成分的溶解度有直接的关系。例如,在地壳中分布光的氧、钙、镁、钾、钠等在地下水中是常见的,而硅、铁等虽在地壳中有很广的分布,但其溶解度较低,在地下水中就不多见。氯在地壳中分布虽少,但在地下水中却常常富集起来,形成氯化物水型就是由它的溶解度决定的。地下水中分布多的离子有CI-、SO42-、HCO32 一、Na+、K+、Ca22+、及Mg2 + 。其次有H+、NH4+、Fe2 +、Fe3 +、Mn2 +、OH-、、NO3-、CO32-、及PO43-。以未离解(化合)的分子状态存在的有Fe 203、AI2O3、及H2SiO3等。地下水中常见的溶解气体成分为CO2、O2、N2、CH4、H2S、H2及Rn等。

 

  ②地下水的酸碱度(pH):地下水的酸碱度是用氢离子浓度的对数值来表示的,即pH=-log[H+]。在纯水中氢离子浓度与氢氧根离子浓度相等,水呈中性反应。当水中H+浓度大于OH一浓度时,水呈酸性反应。而当水中H+浓度小于OH一浓度时,水则呈碱性反应。即[H+]=10-7]时,pH=7,水呈中性。当[H+] >10-7]时,pH<7时,水呈酸性,当[H + ] <10-7]时,pH>7时,水呈碱性,通常根据pH值把地下水分为强 酸性(pH <5)、弱酸性(pH =5~7)、中性(pH = 7)、弱碱性( pH = 7~9)和强碱性(pH>9)五种。大多数地下水呈弱碱性反应,在硫化物矿床与煤田地区则见有酸性反应的水。

 

  ③地下水的硬度:地下水的硬度由水中的钙、镁离子构成。用每升水中钙、镁离子之和的毫克当量数来表示。我国一般采用德国度H°来表示,1德国度相当于1升水中含有10毫克的CaO或7.2毫克的MgO。1毫克当量硬度等于2.804德国度。即:H°<4.2°为极软水;H°=4.2°~8.4°为软水;H°=8.4°~16.8°为微硬水H°=16.8~25.2°为硬水;H°>25.2°为极硬水。

 

  ④地下水的总矿化度:地下水中所含离子、分子等盐类成分的总量称为总矿化度,用克/升来表示。总矿化度是评价地下水质的主要标志。根据它的大小,可以把地下水分成淡水(<1克/升)、微咸水(1~3克/升)、咸水(3~10}克/升)、盐水(10~50克/升)和卤水(>50克/升)五种。测定地下水总矿化度的方法是在110°C温度下把水蒸干,所得的干涸残余物(干残渣)的数量即是总矿化度值。

 

  ⑤地下水的侵蚀性::地下水的侵蚀性主要是指对金属、混凝土等的侵蚀能力。当水的pH值低,水中含有溶解氧、游离硫酸、H2S、CO2及其他重金属硫酸盐时,即对金属产生强烈的侵蚀破坏作用。金属铁管受到侵蚀破坏,是由于铁臵换了水中的氢离子而引起的。地下水能够破坏混凝土,是因为具有侵蚀性的地下水能溶解和溶滤混凝土的某些成分,并在其中形成一些新化合物,一般分为碳酸侵蚀性(分解侵蚀性)、溶滤侵蚀性、硫酸浸蚀性(结晶侵蚀性)和镁侵蚀性四种。碳酸侵蚀性取决于水中侵蚀性CO2的含量,由于地下水中有游离的CO2存在,当与碳酸盐类接触时,如果游离CO2超过了化学反应平衡状态的含量时,就成为侵蚀性CO2并使碳酸盐发生溶解,于是就具有侵蚀性。溶滤侵蚀是由于碳酸钙溶解,并从混凝土内溶滤出氢氧化钙而产生的。当地下水中不存在侵蚀性CO2时,也可在HCO32-含量很少的情况下通过溶滤侵蚀作用破坏混凝土。硫酸侵蚀性是当SO42-含量高的地下水接触碳酸盐类时发生的一种侵蚀。它是由于SO42-与碳酸盐类中的一些组分产生化学作用而形成一种含有水硫酸盐的结晶使体积膨胀而发生的侵蚀破坏。例如在生成CaSO4〃2H2O时,其体积增大一倍;在生成MgSO4〃7H2O时,共体积增大约4倍。一般当水中CI-含量<10OD毫克/升、SO42-含量超过250毫克/升时,这种地下水就开始有了侵蚀性。镁侵蚀性是在水中含有大量镁离子时产生的。当它与混凝土接触时,表现为水中的MgCI2与混凝土中结晶的Ca(OH)2起交替反应而生成Mg(OH)2和易溶于水的CaCI2:而破坏了混凝土。

 

全自动野外地温监测系统/冻土地温自动监测系统

地源热泵分布式温度集中测控系统

矿井总线分散式温度测量系统方案

矿井分散式垂直测温系统/地热普查/地温监测哪家好选鸿鸥

矿井测温系统/矿建冻结法施工温度监测系统/深井温度场地温监测系统

 

TD-016C型 地源热泵能耗监控测温系统

产品关键词:地源热泵测温,地埋管测温,浅层地温在线监测系统,分布式地温监测系统

此款系统专门为地源热泵生产企业,新能源技术安装公司,地热井钻探公司以及节能环保产业等单位设计,通过连接我司单总线地热电缆,以及单通道或多通道485接口采集器,可对接到贵司单位的软件系统。欢迎各类单位以及经销商详询!此款设备支持贴牌,具体价格按量定制。

RS485竖直地埋管地源热泵温度监测系统【产品介绍】

    地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。较传统的测温电缆设计方法,单总线测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

   采集服务器通过总线将现场与温度采集模块相连,温度采集模块通过单总线将各温度传感器采集到的数据发到总线上。每个采集模块可以连接内置1-60个温度传感器的测温电缆相连。 本方案可以对大型试验场进行温度实时监测,支持180口井或测温电缆及1500点以上的观测井温度在线监测。

RS485竖直地埋管地源热泵温度监测系统

1. 地埋管回填材料与地源热泵地下温度场的测试分析 

2. U型垂直埋管换热器管群间热干扰的研究 

3. U型管地源热泵系统性能及地下温度场的研究 

4. 地源热泵地埋管的传热性能实验研究 

5. 地源热泵地埋管换热器传热研究 

6. 埋地换热器含水层内传热的数值模拟与实验研究,埋地换热器含水层内传热的数值模拟与实验研究。

竖直地埋管地源热泵温度测量系统,主要是一套*基于现场总线和数字传感器技术的在线监测及分析系统。它能有对地源热泵换热井进行实时温度监测并保存数据,为优化地源热泵设计、探讨地源热泵的可持续运行具有参考价值。

二、RS485竖直地埋管地源热泵温度监测系统本系统的重要特点:

1.结构简单,一根总线可以挂接1-60根传感器,总线采用三线制,所有的传感器就灯泡一样,可以直接挂在总线上.

2.总线距离长.采用强驱动模块,普通线,可以轻松测量500米深井.

3.的深井土壤检测传感器,防护等级达到IP68,可耐压力高达5Mpa. 

4.定制的防水抗拉电缆,增强了系统的稳定性和可靠特点总结:高性价格比,根据不同的需求,比你想象的*.

针对U型管口径小的问题,本系统是传统铂电阻测温系统理想的替代品. 可应用于:

1.地埋管回填材料与地源热泵地下温度场的测试分析 

2.U型垂直埋管换热器管群间热干扰的研究 

3. U型管地源热泵系统性能及地下温度场的研究 

4. 地源热泵地埋管的传热性能实验研究 

5. 地源热泵地埋管换热器传热研究 

6. 埋地换热器含水层内传热的数值模拟与实验研究。

   本系统技术参数:支持传感器:18B20高精度深井水温数字传感器,测井深:1000米,传感器耐压能力:5Mpa ,配置设备:远距离温度采集模块+测井电缆+传感器,

RS485竖直地埋管地源热泵温度监测系统系统功能: 

1、温度在线监测 

2、 报警功能 

3、 数据存储 

4、定时保存设置

5、历史数据报表打印 

6、历史曲线查询等功能。

【技术参数】

1、温度测量范围:-10℃ ~ +100℃

2、温度精度: 正负0.5℃ (-10℃ ~ +80℃)

3、分  辨 率: 0.1℃

4、采样点数: 小于128

5、巡检周期: 小于3s(可设置)

6、传输技术: RS485、RF(射频技术)、GPRS

7、测点线长: 小于350米

8、供电方式: AC220V /内置锂电池可供电1-3 

9、工作温度: -30℃ ~ +80℃

10、工作湿度: 小于90%RH

11、电缆防护等级:IP66

使用注意事项:

防水感温电缆经测试与检测,具备一定的防水和耐水压能力,使用时,请按以下方法操作与使用:
1. 使用时,建议将感温电缆置于U形管内以方便后期维护。
若置与U形管外,请小心操作,做好电缆防护,防止在安装过程中电缆被划伤,以保持电缆的耐水压能力和使用寿命。
2. 电缆中不锈钢体为传感器所在位置,因温度为缓慢变化量,正常使用时,请等待测物热平衡后再进行测量。
3. 电缆采用三线制总线方式,红色为电源正,建议电源为3-5V DC,黑色为电源负,兰色为信号线。请严格按照此说明接线操作。
4. 系统理论上支持180个节点,实际使用应该限制在150个节点以内。
5.系统具备一定的纠错能力,但总线不能短路。
6. 系统供电,当总线距离在200米以内,则可以采用DC9V给现场模块供电,当距离在500米之内,可以采用DC12V给系统供电。

【北京鸿鸥成运仪器设备有限公司提供定制各个领域用的测温线缆产品介绍】

地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷.在埋地管换热器设计中,土壤的导热系数是很重要的参数.而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地埋测温电缆的设计显得尤其重点。

   由北京鸿鸥成运仪器设备有限公司推出的地源热泵温度场测控系统,硬件采取*ARM技术;上位机软件使用编程语言技术设计,富有人性、直观明了;测温传感器直接封装在电缆内部,根据客户距离进行封装。目前该系统广泛应用于地源热泵地埋管、地源热泵温度场检测、地源热泵地埋换热井、地源热泵竖井及地源热泵温度场系统进行地温监测,本系统的可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

地源热泵诊断中土壤温度的监测方法:
  为了实现地源热泵系统的诊断,必须首先制定保证系统正常运行的合理的标准。在系统的设计阶段,地下土壤温度的初始值是一个重要的依据参数,它也是在系统运行过程中可能产生变化的参数。如果在一个或几个空调采暖周期(一般一个空调采暖周期为1年)后,系统的取热和放热严重不平衡,则这个初始温度会有较大的变化,将会大大降低系统的运行效率。所以设计选用土壤温度变化曲线作为诊断系统是否正常的标准。
  首先对地源热泵系统所控制的建筑物进行全年动态能耗分析,即输入建筑物的条件,包括建筑的地理位置、朝向、外形尺寸、围护结构材料和房间功能等条件,计算出该区域全年供暖、制冷的负荷,我们根据该负荷,选择合适的系统配置,即地埋管数量以及必要的辅助冷热源,并动态模拟计算地源热泵植筋加固系统运行过程中土壤温度的变化情况,得到初始土壤温度标准曲线。采用满足土壤温度基本平衡要求的运行方案运行,同时系统实时监测土壤温度变化情况,即依靠埋置在地下的测温传感器监测土壤的温度,并且将测得的温度传递给地源热泵系统。

浅层地温能监测系统概况:

地源热泵空调系统利用土壤作为埋地管换热器的热源或热汇,对建筑物进行供热和供冷,在埋地管换热器设计中,土壤的导热系数是很重要的参数,而对地温进行长期可靠的监测显得特别重要。在现场实测土壤导热系数时测试时间要足够长,测试时工况稳定后的流体进出口及不同深度的温度会影响测试结果的准确性。因此地源热泵地埋测温电缆的设计显得尤其重点。较传统的地源热泵测温电缆设计方法,北京鸿鸥成运仪器设备有限公司研发的数字总线式测温电缆因为接线方便、精度高且不受环境影响、性价比高等优点,目前已广泛应用于地埋管及地源热泵系统进行地温监测,因可靠性和稳定性在诸多工程中已得到了验证并取得了较好的口啤。

   为方便研究土壤、水质等环境对空调换热井能效等方面的可靠研究或温度测量,目前地源热泵地埋管测温电缆对于地埋换热井,有口径小,深度较深等特点的测温方式,如果测量地下120米的地源热泵井,要放12路线PT100传感器。12根测温线缆若平均放置,即10米放一个探头,则所需线材要1500米,在井上需配置一个至少12通道的巡检仪,若需接入电脑进行温度实时记录,该巡检仪要有RS232或RS485功能,根据以上成本估计,这口井进行地热测温至少成本在8000元,虽然选择高精度的PT100可提高系统的测温精度,但对模拟量数据采集,提供精度的有效办法是提供仪器的AD转换器的位数,即提供巡检仪的测量精度,若能够在长距离测温的条件下进行多点测温,能够做到0.5度的精度,则是非常不容易。针对这一需求,北京鸿鸥成运仪器设备有限公司推出“数字总线式地源热泵地埋管测温电缆”及相应系统。矿井深部地温监测,地源热泵温度监测研究,地源热泵温度测量系统,浅层地热测温系统。

地源热泵数字总线测温线缆与传统测温电缆对比分析:
   传统的温度检测以热敏电阻、PT100或PT1000作为温度敏感元件,因其是模拟量,要对温度进行采集,若需较高精度,需要选择12位或以上的AD转换及信号处理电路,近距离时,其精度及可靠性受环境影响不大,但当大于30米距离传输时,宜采用三线制测方式,并需定期对温度进行校正。当进行多点采集时,需每个测温点放置一根电缆,因电阻作为模拟量及相互之间的干扰,其温度测量的准确度、系统的精度差,会受环境及时间的影响较大。模块量传感器在工作过程中都是以模拟信号的形式存在,而检测的环境往往存在电场、磁场等不确定因素,这些因素会对电信号产生较大的干扰,从而影响传感器实际的测量精度和系统的稳定性,每年需要进行校准,因而它们的使用有很大的局限性。

    北京鸿鸥成运仪器设备有限公司研发的总线式数字温度传感器,具有防水、防腐蚀、抗拉、耐磨的特性,总线式数字温度传感器采用测温芯片作为感应元件,感应元件位于传感器头部,传感器的精度和稳定性决定于美国进口测温芯片的特性及精度级别,无需校正,因数据传输采用总线方式,总线电缆或传感器外径可做得很小,直径不大于12mm,且线路长短不会对传感器精度造成任何影响。这是传统热电阻测温系统*的优势。所以数字总线式测温电缆是地源热泵地埋管管测温、地温能深井和地层温度监测理想的设备。数字总线式数据传感器本身自带12位高精度数据转换器和现场总线管理器,直接将温度数据转换成适合远距离传输的数字信号,而每个传感器本身都有唯的识别ID,所以很多传感器可以直接挂接在总线上,从而实现一根电缆检测很多温度点的功能。

地源热泵大数据监控平台建设

一、系统介绍

1、建设自动监测监测平台,可监测大楼内室内温度;热泵机组空调侧和地源侧温度、

压力、流量;系统空调侧和地源侧温度、压力、流量;热泵机组和水泵的电压、电流、功率、

电量等参数;地温场的变化等,实现热泵机组运行情况 24 小时实时监测,异常情况预

警,做到真正的无人值守。可对热泵系统的长期运行稳定性、系统对地温场的影响以及能效

比等进行综合的科学评价,为进一步示范推广与系统优化的工作提供数据指导依据。

具体测量要求如下:

1)各热泵机组实时运行情况;

2)室内温度监测数据及变化曲线;

3)室外环境温度数据及变化曲线;

4)机房内空调侧出回水温度、压力、流量等监测数据及变化曲线;

5)机房内地埋管侧出回水温度、压力、流量等监测数据及变化曲线;

6)机房内用电设备的电流、电压、功率、电能等监测数据及变化曲线;

7)地温场内不同深度的地温监测数据及变化曲线;

8)能耗综合分析、系统 COP 分析以及系统节能量的评价分析。

2、自动监测平台建成以后可以对已经安装自动监测设备的地热井实施自动监测的数据分

析展示,可实现地热井和回灌井的水位、水温、流量实施传输分析,并可实现数据异常情况预

警,做到实时监管,有地热井运行的稳定性。

1)开采水量及回水水量的流量监测及变化曲线;

2)开采水温及回水水温的温度监测及变化曲线;

3)开采井井内水位监测及变化曲线;

 

 

推荐产品如下:

地源热泵温度监控系统/地源热泵测温/多功能钻孔成像分析仪/井下电视/钻孔成像仪/地热井钻孔成像仪/井下钻孔成像仪/数字超声成像测井系统/多功能超声成像测井系统/超声成像测井系统/超声成像测井仪/成像测井系统/多功能井下超声成像测井仪/超声成象测井资料分析系统/超声成像

关键词:地热水资源动态监测系统/地热井监测系统/地热井监测/水资源监测系统/地热资源回灌远程监测系统/地热管理系统/地热资源开采远程监测系统/地热资源监测系统/地热管理远程系统/地热井自动化远程监控/地热资源开发利用监测软件系统/地热水自动化监测系统/城市供热管网无线监测系统/供暖换热站在线远程监控系统方案/换热站远程监控系统方案/干热岩温度监测/干热岩监测/干热岩发电/干热岩地温监测统/地源热泵自动控制/地源热泵温度监控系统/地源热泵温度传感器/地源热泵中央空调中温度传感器/地源热泵远程监测系统/地源热泵自控系统/地源热泵自动监控系统/节能减排自动化系统/无人值守地源热泵自控系统/地热远程监测系统

地热管理系统(geothermal management system)是为实现地热资源的可持续开发而建立的管理系统。

我司深井地热监测产品系列介绍:

1.0-1000米单点温度检测(普通表和存储表)/0-3000米单点温度检测(普通显示,只能显示温度,没有存储分析软件功能)

2.0-1000米浅层地温能监测/高精度远程地温监测系统采集器采用低功耗、携带方便;物联网NB无线传输至WEB端B/S架构网络;单总线结构,可扩展256个点;进口18B20高精度传感器,在10-85度范围内,精度在0.1-0.2

3. 4.0-10000米分布式多点深层地温监测(采用分布式光纤测温系统细分两大类:1.井筒测试 2.井壁测试

4.0-2000NB型液位/温度一体式自动监测系统(同时监测温度和液位两个参数,MAX耐温125摄氏度)

5.0-7000米全景型耐高温测温成像一体井下电视(同时监测温度和视频图片等)

6. 微功耗采集系统/遥控终端机——地热资源监测系统/地热管理系统(可在换热站同时监测温度/流量/水位/泵内温度/压力/能耗等多参数内容,可实现物联网远程监控,24小时无人值守)

有此类深井地温项目,欢迎新老客户朋友垂询!北京鸿鸥成运仪器设备有限公司

关键词:地热井分布式光纤测温监测系统/分布式光纤测温系统/深井测温仪/深水测温仪/地温监测系统/深井地温监测系统/地热井井壁分布式光纤测温方案/光纤测温系统/深孔分布式光纤温度监测系统/深井探测仪/测井仪/水位监测/水位动态监测/地下水动态监测/地热井动态监测/高温水位监测/水资源实时在线监控系统/水资源实时监控系统软件/水资源实时监控/高温液位监测/压力式高温地热地下水水位计/温泉液位测量/涌井液位测量监测/高温涌井监测水位计方案/地热井水温水位测量监测系统/地下温泉怎么监测水位/ 深井水位计/投入式液位变送器 /进口扩散硅/差压变送器/地源热泵能耗监控测温系统/地源热泵能耗监测自动管理系统/地源热泵温度远程无线监控系统/地源热泵能耗地温远程监测监控系统/建筑能耗监测系统

【地下水】洗井和采样方法对分析数据的影响
Baidu
map